Vibrational Assignments and Potential Constants for

cis- and trans-1-Chloro-2-fluoroethylenes and

Their Deuterated Modifications¹

by Norman C. Craig,² Y.-S. Lo, Lawrence G. Piper, and John C. Wheeler

Department of Chemistry, Oberlin College, Oberlin, Ohio 44074 (Received October 29, 1969)

From infrared and Raman spectra a complete assignment of vibrational fundamentals has been obtained for cis- and trans-CCIHCFH, CCIDCFH, CCIHCFD, and CCIDCFD. For cis-CCIHCFH the a' modes are 3114, 3102, 1661, 1335, 1231, 1062, 812, 656, and 205 cm⁻¹, and the a'' modes are 857, 735, and 442 cm⁻¹. For trans-CCIHCFH the a' modes are 3103, 3094, 1647, 1296, 1218, 1127, 876, 447, and 270 cm⁻¹, and the a'' modes are 888, 784, and 270 cm⁻¹. ΔE_0° (electronic) is then found to be 867 \pm 90 cal/mol with the cis isomer having the lower energy. Urey-Bradley force constants for the in-plane vibrations have been calculated by fitting the frequencies of all eight species at once. General valence force (GVF) constants for the out-of-plane modes have been calculated for the cis and trans species separately. The GVF constants for the two isomers are consistent with each other and with those obtained previously for the cis- and trans-1,2- diffuoroethylenes.

The cis isomers of the symmetrically substituted species 1,2-difluoroethylene,³ 1,2-dichloroethylene,⁴ and 1,2-difluorodiazene, NF=NF,⁵ are known to be of lower energy than the corresponding *trans* isomers. This energy difference is believed to be due to a nonbonded attractive force between the halogen atoms in the cis configuration. In an exploratory study Viehe also found the *cis* isomers of ethylenes containing a fluorine atom and a chlorine, bromine, or iodine atom to be more stable than the corresponding trans isomers.⁶ As representatives of these mixed halogen systems the 1-chloro-2-fluoroethylenes appear to be the best choice for a thorough thermodynamic and spectroscopic investigation. For the cis-trans isomerization of the chlorofluoroethylenes we have confirmed Viehe's observation of cis stability and have found $\Delta H^{\circ}_{615} = 782 \pm 22 \text{ cal/mol} \text{ and } \Delta S^{\circ}_{615} = 0.21 \pm 22 \text{ cal/mol} \text{ and } \Delta S^{\circ}_{615} = 0.21 \pm 22 \text{ cal/mol} \text{ and } \Delta S^{\circ}_{615} = 0.21 \pm 22 \text{ cal/mol} \text{ and } \Delta S^{\circ}_{615} = 0.21 \pm 22 \text{ cal/mol} \text{ and } \Delta S^{\circ}_{615} = 0.21 \pm 22 \text{ cal/mol} \text{ and } \Delta S^{\circ}_{615} = 0.21 \pm 22 \text{ cal/mol} \text{ and } \Delta S^{\circ}_{615} = 0.21 \pm 22 \text{ cal/mol} \text{ and } \Delta S^{\circ}_{615} = 0.21 \pm 22 \text{ cal/mol} \text{ cal/mol} \text{ cal/mol} \text{ and } \Delta S^{\circ}_{615} = 0.21 \pm 22 \text{ cal/mol} \text{ cal/mol}$ 0.04 cal/mol°K.⁷

The present paper is concerned, however, principally with obtaining complete assignments of the vibrational fundamentals of *cis*- and *trans*-CClHCFH as a step toward understanding *cis* stability in this system. From infrared spectra alone Viehe and coworkers assigned ten of the twelve fundamentals of the *cis* isomer and eight of the fundamentals of the *trans*.⁸ With the aid of Raman spectra we have completed the assignments of the vibrational fundamentals for these two species and have also obtained assignments for the three deuterated modifications of each isomer. The frequencies of the deuterated species are of interest not only as support for the assignments of the undeuterated molecules but as a basis for exploring the force fields in *cis* stable isomer pairs. The present paper includes preliminary results of such normal coordinate calculations.

Experimental Section

Syntheses. A mixture of cis-CClHCFH (bp 15.2°)⁶ and trans-CClHCFH (bp -3.8°)⁶ was prepared in 70% yield by dehalogenating CCl₂HCClFH⁹ with zinc dust in refluxing ethanol. The product, which was continuously distilled out of the reaction mixture and trapped at Dry Ice temperature, was about two-thirds cis isomer.

cis- and trans-CCIDCFH were obtained by dehalogenating CCIBrDCCIFH. This ethane mixed with its isomer CCFBrCCIHD was prepared by irradiating equimolar gaseous mixtures of hydrogen bromide and CCIFCCID¹⁰ in a fused-silica flask with ultraviolet light from a mercury arc. The product of the dehalogenation consisted of about 2 parts of *cis*- and *trans*-

(1) Presented, in part, at the 22nd Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, Sept 1967.

(2) Author to whom inquiries should be addressed.

(3) (a) N. C. Craig and E. A. Entemann, J. Amer. Chem. Soc., 83, 3047 (1961);
(b) N. C. Craig and J. Overend, J. Chem. Phys., 51, 1127 (1969).

(4) (a) K. S. Pitzer and L. J. Hollenberg, J. Amer. Chem. Soc., 76, 1493 (1954);
(b) R. E. Wood and R. G. Dickinson, *ibid.*, 61, 3259 (1939).

(5) G. T. Armstrong and S. Marantz, J. Chem. Phys., 38, 169 (1963).

(6) H. G. Viehe, Ber. Deut. Chem. Ges., 93, 1697 (1960).

(7) To be published. Temperatures in °K.

(8) H. G. Viehe, J. Dale, and E. Franchimont, Ber. Deut. Chem, Ges., 97, 244 (1964).

(9) N. C. Craig and Y.-S. Lo, J. Mol. Spectrosc., 23, 307 (1967).

(10) N. C. Craig, G. Y.-S. Lo, C. D. Needham, and J. Overend. J. Amer. Chem. Soc., 86, 3232 (1964).

CCIDCFH and about 1 part of CCIFCHD. Small amounts of *cis*- and *trans*-CFCICFH were also found in the product mixture and were believed to have been derived from CCIFCCIF, present as a contaminant in the starting ethylene. cis- and trans-CClHCFD were prepared by dehalogenating C/Cl₂HCFBrD. This ethane was made photochemically from gaseous hydrogen bromide and CCl₂-CFD.⁹

cis- and trans-CCIDCFD were synthesized by re-

Figure 1. Gas-phase infrared spectrum of cis-1-chloro-2-fluoroethylene.

Figure 2. Gas-phase infrared spectrum of cis-1-chloro-2-fluoroethylene-1-d₁.

Figure 3. Gas-phase infrared spectrum of cis-1-chloro-2-fluoroethylene-2- d_1 .

Figure 4. Gas-phase infrared spectrum of cis-1-chloro-2-fluoroethylene-1,2-d2.

Figure 5. Gas-phase infrared spectrum of trans-1-chloro-2-fluoroethylene.

Figure 6. Gas-phase infrared spectrum of trans-1-chloro-2-fluoroethylene-1-d1.

peated exchange of a *cis-trans* mixture of CClHCFH with 99.7% deuterium oxide saturated with dried calcium oxide. These reactions were performed in sealed standard-wall Pyrex tubes pressurized externally to 225 psi in a rocking bomb. The temperature was about 125° and exchanges were run about 1 day.¹¹ In each case purified samples of the isomers were obtained by gas chromatographic fractionation at room temperature on 6-ft or 12-ft columns packed with

(11) The exchange reaction was stereospecific and proceeded much more rapidly on the chlorinated end of the molecule, a temperature of about 90° being sufficient to effect exchange in 1 day in this case.

Figure 7. Gas-phase infrared spectrum of trans-1-chloro-2-fluoroethylene-2-d1.

Figure 8. Gas-phase infrared spectrum of trans-1-chloro-2-fluoroethylene-1,2- d_2 .

dibutyl phthalate on firebrick. These samples were dried by passing them over phosphorus pentoxide. An attempt to remove impurity carbon dioxide with Ascarite led to a small amount of exchange at the chlorinated end of *trans*-CCIDCFD. Thereafter, Ascarite treatment was confined to the undeuturated species. In all cases final purities were greater than 99.5% based on gas chromatographic analysis. In the infrared spectra (Figures 1-8) of *cis*- and *trans*-CCIDCFH unidentified weak bands were taken as evidence of somewhat lower purity. Isotopic purities given in Figures 2-4 and 6-8 were estimated from infrared intensities. In these figures bands due to isotopic impurities are shown with dashed lines. Other known impurity bands are marked with asterisks.

Spectroscopy. Gas-phase infrared spectra, Figures 1–8, were obtained on a Perkin-Elmer 621 filter-grating spectrometer with samples held in a 10-cm cell fitted with cesium iodide windows. Frequencies, Tables I-VIII, were measured to ± 1 cm⁻¹ for well defined bands under expanded-scale, high-resolution conditions.

Liquid-phase Raman spectra, Tables I-VIII, were recorded photographically on a Hilger E612 spectrograph with mercury 4358-Å excitation. Capillary cells were used, and some samples were as small as 8 mmol. Qualitative depolarizations were obtained by the Edsall–Wilson method.

Results and Discussion

Configurational Assignments. Viehe⁶ assigned the isomeric configurations of the 1-chloro-2-fluoroethylenes on the basis of a higher boiling point for the more polar cis isomer and the strong infrared band for the out-ofplane CH motion of the *trans* isomer at about 880 cm⁻¹. This assignment of configuration is confirmed, as Viehe also noted for his low resolution spectra, by the abundant rotational structure evident in the gas-phase infrared spectra (see Figures 5–8) of the four *trans* species. The assignment is also consistent with the observed coupling constants from the nuclear magnetic spectra of the cis and trans isomers. We find $J_{HF(trans)} =$ 27.3 Hz for the cis isomer (AMX spectrum) and $J_{\text{HF}(cis)} = 8.9$ Hz for the trans isomer (ABX spectrum) in consonance with the relative magnitudes of HF coupling constants for similar olefins.^{10,12}

(12) G. W. Flynn, M. Matsushima, J. D. Baldeschwieler, and N. C. Craig, J. Chem. Phys., 38, 2295 (1963).

Vibrational Assignments. General. All of the chlorofluoroethylene molecules under consideration have C_s symmetry and consequently have nine a' inplane and three a'' out-of-plane fundamentals. The a' fundamentals should have gas-phase infrared band shapes ranging between type A and type B and have polarized Raman bands. The a'' fundamentals should have type C band shapes in the gas-phase infrared and depolarized Raman bands. The *trans* isomer is a prolate near-symmetric top, $\kappa = -0.996$, with a moment of inertia of 9 amu Å² around the unique axis. As a consequence, vibrations which produce dipole

R	aman (liquid)-			Ir (gas)			-Assignment	
Freq, cm ⁻¹	I	Polar- ization	Freq, cm ⁻¹ ^a	a ^b	Band shape ^c	Freq, cm ⁻¹		Sym species
			3919 (16)	0.018	В	3926	$\nu_1 + \nu_7$	A'
			3755 (16)	0.015	A/B	3770	$\nu_1 + \nu_8$	$\mathbf{A'}$
			3114 (15) 3115 ^d	0.52	A	ν_1	Fund.	a'
3105	wm	р	3102	?	?	v 2	Fund.	a'
		-	2977(16)	0.017	A/B	2996	$\nu_{3} + \nu_{4}$	A'
			2717(15)	0.056	A/B	2733	$\nu_2 + \nu_6$	A'
			2663 (16)	0.016	A/B	2670	2 1/4	A'
			2462(16)	0.029	В	2473	v3 + v7	A'
						2462	$2v_5$	A'
			2287(16)	0.039	A/B	2317	ν ₂ + ν ₂	Â'
			2119 (16)	0.067	B	2124	220	A'
			1872(15)	0.012	A	1874	V6 + V7	Â'
			1714 (17)	0.29	A/B	1718	$\nu_{e} + \nu_{s}$	Â'
					,	1714	2210	Â'
						Fermi re	sonance with ν_3 ?	
1660	s	р	$1661 \ (17) \ 1664^d$	1.9	В	ν ₃	Fund.	a'
			1588 (16)	0.60	А	1624	2.11-	Α'
			2000 (20)	0,00		Fermi re	sonance with w?	
						1592	710 + 711	Α′
			1534 (15)	0.014	А	1540		Δ'
			1466 (16)	0.092	A	1470	24.1	Δ'
			1100 (10)	01002		1468	$\frac{2}{1}$	Δ'
			1459	?	9	~ 1456	V2 V8	Δ'
			1430	0.02	A/B	1436	No + No	Δ'
			1335(16)	1.1	A	2100	Fund.	a'
			1339 ^d	0.044	••• • /D	1010		
			1298	0.044	A/B	1312	$2\nu_8$	A'
1014		,	1001 (10)			1299	$\nu_{10} + \nu_{12}$	A'
1214	m	ap	1231(16) 1232^{d}	1.8	A	ν_5	Fund.	a'
			1176(15)	0.03	A/B	1177	$\nu_{11} + \nu_{12}$	A'
1049	m	р	1062 (16) ^e 1063 ^d	3.6	A/B	Võ	Fund.	a'
			1008	0.05	A/B	1017	$\nu_7 + \nu_9$	A'
			908	0.01	Α	?		A'
			884 (17)	0.05	A/B	884	$2\nu_{12}$	\mathbf{A}'
~ 863	wm	dp	${}^{857}_{\sim 875^d}$	0.05	С	ν_{10}	Fund.	a''
803	m	р	812 (16)° 8094	0.71	в	דע	Fund.	a'
~737	vw		735°, ¹ 735ª	1.0	С	ν_{11}	Fund.	a''
648	m	р	656 (17)° 657ª	1.3	Α	ν_8	Fund.	a'
444	m	dp	442 443 ^d	0.18	С	$ u_{12} $	Fund.	a''
205	w	dp	~ 200	0.08	A/B	<i>v</i> 9	Fund.	a'

Table I: Infrared and Raman Spectra and Assignments for cis-CClH=CFH

^a Spacing of P-R branches in parentheses. ^b Absorption coefficient in cm^{-1} atm⁻¹. ^c A and B band shapes are approximate for this molecule of C_s symmetry. ^d Reference 8. ^e Structure present due to chlorine isotope shifts or hot bands. ^f Rotational structure in P and R branches with spacing of 0.8–0.9 cm⁻¹.

moment changes perpendicular to this rotation axis should lead to nearly perpendicular-type bands with readily resolved rotational structure. The out-ofplane modes necessarily have this structure since the unique axis lies in the plane of the molecule. Rotational structure may also be evident for some in-plane modes in the wings of bands when the vibration has a large component of dipole moment change perpendicular to the unique axis, which passes nearly through the two halogen atoms. The *cis* isomer is a less good approximation to a prolate symmetric top since $\kappa = -0.895$. The least moment of inertia of about 31 amu Å² is,

R	aman (liquid)			—Ir (gas)———			Assignment	~
Freq, cm ⁻¹	I	Polar- ization	Freq_{a} , $\operatorname{cm}^{-1}{}^{a}$	α^b	Band shape ^c	Freq, cm ⁻¹		Sym specie
			3751(18)	0.013	A/B	3753	$\nu_1 + \nu_8$	A'
			3114	?	,		cis-CCIHCFH	
9109		-	2002 (17)	0.16	в		Fund	a'
5105	ш	þ	3093(17)	0.10	D Q	P1 2807	1 - 1 - 2 - 1	Δ /
			2807 (19)	0.020	ы л /Ю	2007	$\nu_5 + 2\nu_{10}$	<u>^</u>
			4100 (10) 0496	0.032		2192	$\nu_3 + \nu_5$	<u>^</u>
			2480	0.02	A/D	0400	$\nu_2 + \nu_9$	A/
			0457	0.01	ъ	2400	$\nu_3 + \nu_6$	<u>A</u> /
000			2407	0.01	D A	2409	$\nu_4 + \nu_5$	л /
2327	s	р	2322 (17)	0.44	A	P2	Funa.	a • //
			2250		C	2240	$2\nu_{10} + \nu_{11}$	A.,
			2220		C	2225	$\nu_8 + \nu_{11}$	A
			2000	0.02	?	2006	$\nu_5 + \nu_6$	Α'
			1980	0.01	С	1981	$\nu_5 + \nu_{10}$	A''
1663	w	р	1659 (17) ^e	1.8	A/B	1652	$2\nu_{10}$	$\mathbf{A'}$
						Fermi res	sonance with ν_3	
1642	\mathbf{vs}	р	1637(19)	1.2	В	ν_3	Fund.	a'
		-	1588				cis-CClHCFH impurity	
			1552(16)	0.067	A/B	1556	$2\nu_7$	A'
			1434	0.05	Ċ	1439	$\nu_6 + \nu_{11}$	A'
			1414(16)	0.13	Ă	1414	$\nu_{10} + \nu_{11}$	A'
			1353	0110	$\overline{\mathbf{c}}$	1366	$\nu_7 + \nu_{11}$	A'
			1335 (16)	1.3	Ă	2000	cis-CClHCFH	
1908	sm	n	1304 (17)	0.62	Δ	74.	Fund	a'
1200	5111	P	1231 (16)	1.6	A	F 4	cis-CClHCFH	u
1195		n	1155 (18)	a (5	A /B		Fund	.,
1050	**	þ	1062(17)	20		¥6	Me COHOFH	a
1000	VW		1002 (17)	0,9	A		impurity	
			1021 (18) ^e	0.066	A	1022	$\nu_{11} + \nu_{12}$	A'
			989		A/B	989	trans-CClD=C impurity	FH
			955		A/B		Impurity?	
~870	w	р				868	$2\nu_{12}$	A'
848	s	p	851(18)	0.64	A/B	V6	Fund.	a'
830	w	dp	826ª	0.38	Ċ	V 10	Fund.	a''
~800	vw	*				803	cis-CClHCFH impurity	
772	s	p	778 (16) ^e	0.56	Α	V 7	Fund.	a'
		-	735		С		cis-CClHCFH impurity	
649	s	g	655 (16) ^e	1.1	A/B	Vs	Fund.	a'
592	vw	dp?	588	0.54	C –	P 11	Fund.	a''
			442		Ċ	442	cis-CClHCFH impurity	-
434	s	dp	434	0.15	С	V 12	Fund.	a''
000			900	0.07	-	- 18	77	-/

Table II: Infrared and Raman Spectra and Assignments for cis-CCID=CFH

however, small enough to lead to rotational structure which can be resolved in favorable regions of the spectrum.

cis-1-Chloro-2-fluoroethylene. In the infrared spectrum of cis-CClHCFH in Figure 1 seven prominent type A/B bands for in-plane fundamentals are located at 3114, 1661, 1335, 1231, 1062, 812, and 656 cm⁻¹. Each of these bands with the exception of the 3114-cm⁻¹ band has a counterpart in the Raman spectrum (Table I). All but the 1231-cm⁻¹ band are definitely polarized. Well defined type C bands in the infrared spectrum at 735 and 442 cm⁻¹ account for two of the out-of-plane fundamentals. The Raman spectrum has a very weak

band corresponding to the higher frequency out-ofplane fundamental and a depolarized band of medium intensity corresponding to the lower frequency one. Though not apparent in the survey scan in Figure 1, rotational spacing of about 0.8 cm⁻¹ was resolved in the 735-cm⁻¹ band. Only the spike of the Q branch of the third out-of-plane fundamental (ν_{10}) appears at 857 cm⁻¹ in the infrared, but this assignment is well supported by a depolarized Raman band. The low infrared intensity of ν_{10} is attributable to a CH torsion with a_2 -like symmetry. The shoulder of a band seen at the low-frequency edge of the infrared spectrum must be due to an in-plane fundamental even though

P	taman (liquid)			-Ir (gas)			-Assignment	
Freq, cm ⁻¹	I	Polar- ization	Freq, cm ^{-1a}	α^b	Band shape ^c	Freq, cm ⁻¹		Sym species
			3899 (18)	0.018	в	3903	$v_1 + v_7$	$\mathbf{A'}$
			3365 (16)	0.014	A/B	3369	$\nu_2 + \nu_5$	\mathbf{A}'
					·	3287	$\nu_2 + \nu_6$	A'
3110	wm	р	3112(15)	0.40	A/B	ν_1	Fund.	a'
		-	2691(15)	0.064	A/B	2695	$\nu_3 + \nu_5$	$\mathbf{A'}$
			2549(15)	0.013	B	2566	$2\nu_4$	A'
2325	s	р	2318(16)	0.091	A/B	ν_2	Fund.	a'
		-	2249(16)	0.014	B	2252	$\nu_4 + \nu_6$	A'
			2100(15)	0.067	A/B	2102	$2\nu_5$	A'
			2022(16)	0,012	В	2020	$v_5 + v_6$	A'
			1934 (15)	0.010	В	1938	$2\nu_6$	$\mathbf{A'}$
			1840 (17)	0.013	A/B	1842	$\nu_5 + \nu_7$	A'
1641	vs	p	1644 (16)	2.7	В́	$\boldsymbol{\nu}_3$	Fund.	a'
		r.	1584 (14)	0.48	В	1606	$\nu_{6} + \nu_{8}$	$\mathbf{A'}$
						Fermi re	sonance with va	
						1592	2410	A'
			1482 (16)	0.027	В	1488	$\nu_4 + \nu_9$	A'
			1446(17)	0.16	Ā	1446	$\nu_{10} + \nu_{11}$	A'
			1335	1.2	A		cis-CClHCF	H
1969	17117	dn	1283 (15)	23	в	714	Fund.	ຄ′
1400	V W	up	1235 (10)	2.0	C?	~ 1244		Ä"
			1106 (15)	0.030	Δ.	1196	$\frac{1}{12}$	Â'
			1162 (16)	0.000	A/B	1174	$\nu_1 + \nu_2$	Â'
			1102(10) 1197(15)	0.000	Δ /B	1111	trans-CCIHC	TD
			1127 (10)	0.010	A/D		impurity	
1038	\mathbf{sm}	\mathbf{p}	1051 (17)	4.1	В	v 5	Fund.	a'
			990		A?	996	ν ₂ + ν ₉	A'
965	m	p?	969 $(16)^{d_{16}}$	0.80	Α	ν_6	Fund.	a'
804	w	dp?	796 ^d	~ 0.6	С	ν_{10}	Fund.	a''
789	s	р	791 (16)	0.72	A	ν_7	Fund.	a'
			735	1.3	С		cis-CClHCF impurity	H
652	wm	dp	650 ^d	~ 0.5	С	ν_{11}	Fund.	a''
632	8	p	637	1,2	Α	vs	Fund.	a'
		-	588		С		cis-CClDCF impurity	H
			575°		С		cis-CClDCF impurity	D
			567		С	\sim 569	$\nu_6 - \nu_{12}?$	A''
404	m	dp	400	0.20	С	ν_{12}	Fund.	a''
205	sm	n?	200	~ 0.07	?	No.	Fund.	a.'

Table III: Infrared and Raman Spectra and Assignments for cis-CClH=CFD

a-c See Table I. d Rotational structure in P and/or R branches with 0.85–0.95 cm⁻¹ spacing. c See Table I.

its Raman counterpart is depolarized. Only the second CH-stretching mode remains to be assigned. It appears an an indistinct shoulder on the low-frequency side of the 3114-cm⁻¹ infrared band and as a polarized Raman band at 3105 cm⁻¹. Table I also includes the ten assignments of Viehe, *et al.*⁸ Agreement is within a few cm⁻¹ for all but ν_{10} .

cis-1-Chloro-2-fluoroethylene-1-d₁. Bands for all twelve fundamentals of cis-CClDCFH are clearly apparent in the gas-phase infrared in Figure 2. Each of the nine with a type A/B shape corresponds to a polarized Raman band (Table II), and each of the three with a type C shape corresponds to a depolarized Raman band. Although ν_6 and ν_{10} overlap in the gas-phase infrared, the characteristic shapes are evident, and 0.8 cm^{-1} rotational spacing is present in the P branch of the ν_{10} band.

cis-1-Chloro-2-fluoroethylene-2-d₁. At first glance the gas-phase infrared spectrum of cis-CClHCFD in Figure 3 appears to have only eight type A/B bands, even if the shoulder at about 200 cm⁻¹ is included, and only two type C bands. Closer inspection reveals overlap between bands for in-plane and out-of-plane fundamentals at both 800 and 650 cm⁻¹. This interpretation is confirmed by the Raman spectrum (Table III) in which a pair of polarized and depolarized bands is present in each of these regions. The assignment of bands due to out-of-plane fundamentals to these two regions is also supported by the 0.9 cm⁻¹ rotational spacing in R branches of the type C parts of the bands.

Table IV:	Infrared	and I	Raman	Spectra	and	Assignments	of	cis-CClD=CFL)
-----------	----------	-------	-------	---------	-----	-------------	----	--------------	---

	Raman (liqui	d)		Ir (gas)			Assignment	
Freq, cm ⁻¹	I	Polar- ization	Freq, cm ^{-1 a}	ab	Band shape ^c	Freq, cm ⁻¹		Sym specie
			3505(15)	0.010	Α	3504	$\nu_1 + \nu_4$	A'
			3460	0.017	?	3459	$\nu_2 + \nu_4$	$\mathbf{A'}$
			3120	0.011	?	3128	$\nu_2 + \nu_6$	A'
			2782(15)	0.050	В	2791	$\nu_3 + \nu_6$	A'
			2459(16)	0.023	В	2460	$\nu_3 + \nu_6$	$\mathbf{A'}$
2342	s	g	2342 (17)	0.13	Α	$\boldsymbol{\nu}_1$	Fund.	a'
2305	m	dp	2297 (16)	0.44	Α	v 2	Fund.	a'
		*	2138 (16)	0.031	В	2146	$\nu_4 + \nu_6$	A'
			1964 (17)	0,023	В	1993	$\nu_4 + \nu_6$	A'
			1825(15)	0.016	Α	1832	$\nu_3 + \nu_9$	$\mathbf{A'}$
			1810	?	?	1815	$\nu_5 + \nu_8$	A'
1624	vs	a	1629(16)	2.9	В	ν_3	Fund.	a'
		•	1537 (16)	0.079	в	1540	$2\nu_7$	A'
			1406	0.034	С	1406	$\nu_6 + \nu_{11}$	A''
			1381 (17)	0.095	A	1408	$\nu_7 + \nu_8$	A'
						1382	$2\nu_{10}$	$\mathbf{A'}$
			1356	0.037	С	1378	$\nu_5 + \nu_{12}$	A''
						1345	$\nu_2 + \nu_{11}$	A''
			1303	?	?		cis-CClDCFH	
							impurity	
			1263 (15)	0.28	Α	1276	$2\nu_8$	A'
						1266	$\nu_{10} + \nu_{11}$	A'
						1187	$\nu_5 + \nu_9$	A'
						Fermi re	sonance with ν_4	
1142	vw	q	1162(17)	5.2	Α	ν_4	Fund.	a'
		-	1085 (16)	0.095	Α	1085	$\nu_{10} + \nu_{12}$	A'
	,		1051	~ 3.3	A/B		cis-CClHCFD	
	9						impurity	
977	m	р	984 (15) ^d	1.2	В	ν_{5}	Fund.	a'
830	s	р	$831 \ (16)^{e,f}$	0.42	A	v 6	Fund.	a'
			745°		C?		cis-CClHCFD impurity?)
764	s	р	770 (16)	0.42	Α	v 7	Fund.	a'
690	s	dp	691 ⁷	0.012	S C	v 10	Fund.	a''
632	s	p	638 (15) ^e	1.1	Α	V8	Fund.	a'
578	vw	$\bar{\mathbf{p}}?$	575	0.52	С	ν_{11}	Fund.	a''
395	m	dp	394	0.16	С	v_{12}	Fund.	a''
203	s	g	<200	?	?	Vo	Fund.	a′

^{a-c} See Table I. ^d Rotational spacing of 0.71 cm⁻¹ in R branch; poorly resolved structure in *P*. ^e See Table I. ['] Poorly resolved rotational structure.

Of the nine bands assigned to in-plane modes only the one at 1283 cm⁻¹ corresponds to a depolarized Raman band, but there can be no doubt about this assignment. *cis-1-Chloro-2-fluoroethylene-1,2-d2*. In contrast to the spectra of the other three cis species, the infrared spectrum of cis-CClDCFD does not have any overlapping bands due to fundamentals. In Figure 4 eight prominent type A/B bands and a wing of a band

F	laman (liquid)		~	Ir (gas)			Assignment	
Freq, cm ⁻¹	I	Polar- ization	Freq, cm ⁻¹ a	α^b	Band shape ^c	Freq, cm ⁻¹		Syn spec
			3977 (13)	0.02	В	3979	$\nu_1 + \nu_7$	\mathbf{A}'
			3350	0.008	В	3364	$\nu_2 + \nu_9$	A'
					-	0001	$v_0 + v_{10}$	Â'
			$3103 (12)^{f}$	0.82	A/B	21	Fund.	a.'
			3115 ^d	0.02	M/D	P 1	i una.	4
3094	m	р				$\boldsymbol{\nu}_2$	Fund.	a'
			2854(12)	0.035	В	2865	$\nu_3 + \nu_5$	A'
			2769 (11)	0.044	A/B	2774	$\nu_3 + \nu_6$	A'
			2247 (12)	0.20	A/B	2254	220	A'
			2090	0.01	B	2094	$\nu_2 + \nu_3$	A'
					-		ν ₅ + ν ₇	A'
			1914/	0.062	$\sim C$	1917	<i>u</i> o + <i>u</i> o	Α'
			1011	0.002		1011		Δ,
			1769 (12)	0.060	σ	1776	$\nu_3 + \nu_{12}$	
			1100 (10)	0.000	D	1770	$2\nu_{10}$	A /
			1000 (14)	0 51	T	1/04	$\nu_7 + \nu_{10}$	A
			1000 (14)	0.51	В	1672	$\nu_{10} + \nu_{11}$	A'
						1665	$\nu_5 + \nu_8$	A'
						Fermi re	sonance with ν_3	
1643	s	р	1647 (12) 1647ª	1.5	В	ν_3	Fund.	a'
			1572(14)	0.061	B	1574	1 /2 + 1/2	Δ'
			1012 (11)	0.001	Б	Formiro	sonance with	
						1569		A /
			1490	0.011	0	1000	2 <i>p</i> ₁₁	
			1489	0.011	~ 0	1488	$\nu_5 + \nu_9$	A
			1007	0.054	~	100	$\nu_5 + \nu_{12}$	A
			1395	0.051	~0	1397	$\nu_3 + \nu_9$	A
				• • •	~		$\nu_6 + \nu_{12}$	A''
			1375	0.02	С	1377	$\nu_3 - \nu_9$	Α'
							$\nu_3 - \nu_{12}$	$\mathbf{A}^{\prime \prime}$
			1349(14)	0.025	в		?	
			1321(11)	0.079	В	1323	v7 + v8	Α'
			1317d					
1294	s	р	1296(15)	0.047	A/B	V4	Fund.	a'
1218	m	p	$1218 (13)^{\prime}$	0.11	B	ν_5	Fund.	a'
		•	12174					
1112	m	р	1127(13)	12	A/B	VB	Fund.	a'
			1127 ^d					
			1054	0.052	~C	1054	$\nu_9 + \nu_{11}$	\mathbf{A}'
							$\nu_{11} + \nu_{12}$	A'
			1028*	0.014	~C	1026	$\nu_4 - \nu_9$	\mathbf{A}'
							$\nu_4 - \nu_{12}$	A'
-896	vw	dp?	888 ⁷	1.3	С	¥10	Fund.	a''
-000	• • •	ap.	~8854	1.0	Ť	- 10		
071	-	n	876 (13)	2.8	A/B	1/**	Fund	ล'
0/1	111	þ	975 d	2.0	M / D	v 7	i unu.	4
			7011	0.19	C		Fund	
180	m	ap	1041	0,12	U	P11	r unu.	a
			(04° 670 (19)	0.005	ъ	870		A /
			0/8 (13)	0,000	<u>р</u>	U/9 E40	$\nu_6 - \nu_8$	A /
			525	0.007	ſ	04U	2v9	A'
							$\nu_9 + \nu_{12}$	A
			مندرة بسورو	0.6	-		$2\nu_{12}$	A'
447	S	p	447 (15)	0.060	В	ν_8	Fund.	a'.
274	m	dp	270 ^g	0.82	~C	$\boldsymbol{\nu}_{\boldsymbol{\vartheta}}$	Fund.	a'
						2/19	Fund.	ล''

Table V: Infrared and Raman Spectra and Assignments for trans-CClH=CFH

near 200 cm⁻¹ account for the nine in-plane fundamentals, and three type-C bands account for the three out-of-plane fundamentals. All but the 2305-cm⁻¹ in-plane fundamental have definitely polarized bands in the Raman spectrum (Table IV). Depolarized bands in the Raman spectrum correspond to two of the out-of-plane modes, and the polarization of the third band, which is of very low intensity, is in doubt. As in the case of *cis*-CClHCFH, the weakest band in the infrared for an out-of-plane fundamental corresponds to a well defined, depolarized Raman band and thus to a CD torsion with a₂-like symmetry.

trans-1-Chloro-2-fluoroethylene. The infrared spectrum of trans-CClHCFH in Figure 5 has five prominent type-A/B bands located at 3103, 1647, 1112, 876, and 447 cm⁻¹, which are undoubtedly due to in-plane fundamentals. The corresponding Raman bands (Table V) are polarized. A partly overlapped band at 1296 cm⁻¹, supported by a strong, polarized counterpart in the Raman, is the sixth in-plane fundamental. A stronger band at 1218 cm⁻¹, also supported by a polarized Raman band, is the seventh. The second CH-stretching frequency is observed only in the Raman spectrum as a polarized band at 3094 cm⁻¹. Without a more detailed analysis of the spectra there is no evidence for the ninth in-plane fundamental.

Three type C bands attributable to out-of-plane fundamentals seem to be present in the gas-phase infrared

j	Raman (liquid	.)	~	Ir (gas)			Assignment	
Freq,	_	Polar-	Freq,	x	Band	Freq,		Sym
cm -1	I	ization	cm -1 #	α	shape	cm ⁻¹		specie
			3360	0.005	~C	3365	$\nu_1 + \nu_9$	$\mathbf{A'}$
							$\nu_1 + \nu_{12}$	\mathbf{A}'
3093	wm	p	3099(12)	0.25	В	v 1	Fund.	a'
		-	2757 (12)	0.072	В	2762	$\nu_2 + \nu_8$	A'
							$\nu_3 + \nu_5$	A'
2313	m	p	$2318 \ (12)^d$	0.71	в	v 2	Fund.	a'
		•	2280	0.02	С	2287	$\nu_3 + \nu_{11}$	A'
			2253(12)	0.11	в	2264	$2\nu_{5}$	A'
			2120(13)	0.025	В	2121	V5 + VB	A'
			1973 (13)	0.030	В	1978	220	A'
			1915	< 0.02	B?	1914	$\nu_z + \nu_\tau$	A'
			1896	0.053	~C	1896	$\nu_2 + \nu_0$	A'
			1000	01000	Ũ	1000	$y_{2} + y_{12}$	
			1695 (13)	0.37	в	1702	21/10	Â'
1626	170	n	1630(12)	1 1	B	1102	Fund	a'
1550	¥ 13	Р	1563 (11)	0 14	Δ	1564	2	Δ,
-1000	¥ ¥¥		1506 (11)	0.11	B	1509		Δ,
			1300(12) 1420(12)	0.020	A/B	1/30	$\nu_{10} + \nu_{11}$	Δ'
			1429 (13)	0.030	A/D	1409	$\nu_7 + \nu_{11}$	Λ'
			1905	0.064		1200	$\nu_6 + \nu_9$	A /
			1990	0.004	~ 0	1990	$\nu_5 + \nu_9$	A ./
			1900 (19)4	0.00	n	1014	$\nu_5 + \nu_{12}$	A
1009	_		1309 (13)"	0.06	B	1314	$2\nu_{11}$	A
1283	s	р	1284 (14)	0.074	B	V4 1000	Fund.	a
			1218	0.28	Ŷ	1226	$\nu_7 + \nu_8$	A
			1400				Impurity?	
			1183	0.15	Ŷ	1186	$\nu_{8} - \nu_{8}$	\mathbf{A}'
					_		Impurity?	
1115	m	р	1132(13)	8.9	В	ν_5	Fund.	a'
			1046(12)	0.037	Α	1048	$\nu_7 + \nu_9$	A'
							$\nu_7 + \nu_{12}$	A'
			1016	0.021	С	1018	$\nu_4 - \nu_{12}$	\mathbf{A}'
980	\mathbf{sm}	р	989	4.0	в	ν_{6}	Fund.	a'
			~ 875				trans-CClH0	\mathbf{FH}
							impurity	
853	m	dp	851 ^{d,e}	0.40	С	ν_{10}	Fund.	a''
782	\mathbf{sm}	р	782 (13)	0.88	В	ν_7	Fund.	a'
654	m	dp	657 ^d · e	0.38	С	ν_{11}	Fund.	a''
			546(12)	0.006	в	545	$\nu_6 - \nu_8$	A'
442	vs	р	$444 (14)^d$	0.058	в	<i>v</i> ₈	Fund.	a'
270	s	dp?	266'	0.79	$\sim c$	V9	Fund.	a'
							Fund	

Table VI: Infrared and Raman Spectra and Assignments for trans-CCID=CFH

 a^{-o} See Table I. ^d Rotational spacing of 2.5–2.9 cm⁻¹ in P and R branches. ^e See Table I. ^f Rotational spacing of 5.1 cm⁻¹ in R branch.

spectrum. The assignment of one at 888 cm⁻¹, which overlaps the ν_7 band, is supported by the well developed rotational structure in the R branch and an apparently depolarized Raman band. Rotational structure also supports the assignment of the second type C band at 784 cm⁻¹ to ν_{11} and apparently also the third one at 274 cm⁻¹. The ν_{11} fundamental, which has a prominent, depolarized Raman band and a relatively weak infrared band, must be the CH motion which correlates with b_g symmetry in a symmetrically substituted dihaloethylene. The 6.4-cm⁻¹ spacing of the rotational structure of the R branch of the 274-cm⁻¹ band is nearly twice the normal spacing of 3.3 cm⁻¹. Furthermore, the general appearance of this lowest frequency band is almost identical with that of the corresponding band in the spectrum of *trans*-CFHCFH. For the difluoroethylene

	aman (liquid)	,	—Ir (gas)———				
Freq,		Polar-	Freq,	(8)	Band	Freq,		Sym
cm -1	I	ization	$\operatorname{cm}^{-1} a$	α^b	shape	cm -1		specie
			3968(16)	0.012	A/B	3971	$\nu_1 + \nu_7$	A'
			3348	0.006	?	3361	$\nu_1 + \nu_9$	A'
							$\nu_1 + \nu_{12}$	A''
			3233(11)	0.018	В	3240	$2\nu_3$	A'
3095	m	p	3099 (13)	0.54	Α	ν_1	Fund.	$\mathbf{a'}$
		•	2835(12)	0.021	в	2841	$\nu_3 + \nu_4$	$\mathbf{A'}$
			2740 (11)	0.062	A/B	2745	$\nu_{3} + \nu_{5}$	A'
			2570	0.003	?	2585	$\nu_2 + \nu_9$	A'
							$\nu_2 + \nu_{12}$	A''
						2571	$\nu_{3} + \nu_{6}$	A'
			2340	<0.02	?	2346	$\nu_4 + \nu_5$	$\mathbf{A'}$
2330	m	α	$2323 (12)^d$	0.21	в	V2	Fund.	a'
			2242(12)	0.10	A/B	2250	$2y_5$	$\mathbf{A'}$
			2093 (12)	< 0.15	B	2093	$\nu_4 + \nu_7$	A'
			2072(12)	0.042	Ā	2076	$\nu_5 + \nu_8$	A'
			1900	< 0.024	?	1902	$2\nu_6$	A'
			1892	0.069	~c	1882	$\nu_3 + \nu_9$	A'
			1882		-		$\nu_3 + \nu_{12}$	Ā''
			1742(11)	0.019	?	1744	247	A'
1619	vs	ŋ	1620(12)	1.8	В	¥2	Fund.	a'
		r	1567(12)	0.12	A/B	1569	$\nu_5 + \nu_8$	A'
			1480	0.007	~C	1483	$\nu_3 + \nu_9$	A'
					_		$\nu_3 + \nu_{12}$	A''
			$1378 \ (12)^d$	0.21	в	1395	$\nu_6 + \nu_8$	\mathbf{A}'
						1382	$2\nu_{11}$	A'
			1341	< 0.04			?	
			1315	0.10	В	1316	$\nu_7 + \nu_8$	$\mathbf{A'}$
1213	s	p	$1221 \ (13)^{d,e}$	0.31	Ā	VA	Fund.	a'
1010	~	P	<1140			1133	$\nu_7 + \nu_9$	A'
			•				$\nu_7 + \nu_{12}$	A''
1112	m	n	1125 (13) ^d	11	В	Vs	Fund.	a'
1112		Р	1080	<0.04	$\sim \bar{c}$	1079	$\nu_{10} + \nu_{12}$	Â'
			100		-		$\nu_{9} + \nu_{10}$	A''
			988 (10) ^e	< 0.04	A/B	953	$\nu_{11} + \nu_{12}$	A'
					'	Fermi re	sonance with ν_6	
~ 945	vw	dp	951 (12)°	1.0	Α	Ve	Fund.	a'
010		-1-	894 (10)	< 0.3	A/B	888	$2\nu_8$	A'
869	m	ŋ	872 (13)	2.3	B	דע	Fund.	a'
813	vw	dp	817 ^d	0.75	С	2 10	Fund.	a''
~ 775	vw	dp				785	trans-CClH	CFH
		•					impurity	
689	m	dp	691 ^d	0.15	С	ν_{11}	Fund.	a''
		-	523	0.003	В	524	$2\nu_9$	A'
							$2\nu_{12}$	A'
446	s	р	444 (14)	0.062	В	ν_8	Fund.	a'
266	m	$^{\rm dp?}$	262'	0.75	$\sim c$	ν_9	Fund.	a'
						¥12	Fund.	a''

Table VII: Infrared and Raman Spectra and Assignments for trans-CClH=CFD

^{a-o} See Table I. ^d Rotational structure in P and R branches with 2.4–2.9 cm⁻¹ spacing. ^e See Table I. ^f Rotational structure in P and R branch with 5.2-cm⁻¹ spacing.

R	aman (liquid)	Polar		lr (gas)		TP:	Assignment	
cm ⁻¹	I	ization	Ereq_{a} , $\operatorname{cm}^{-1}{}^{a}$	α^b	Band shape ^c	Freq, cm ⁻¹		Sym species
			3424(15)	0.013	B	3425	$u_0 + u_1$	Α′
			3284(12)	0.012	B	3286	$\nu_2 + \nu_4$	Α'
				0.012	U U	2024	$\nu_2 + \nu_5$	Δ /
			2000 (12)	0.000	ъ	020 1	$\nu_1 - \nu_6$	∩ru ∩ru
			3033 (13)	0.008	D	2098	impurity	
							trans-CClH0 impurity	CFD
			3078(13)	0.012	В	3081	$\nu_2 + \nu_7$	$\mathbf{A'}$
			2730 (11)	0.084	A/B	2738	$\nu_2 + \nu_8$	A'
						2737	$\nu_3 + \nu_4$	$\mathbf{A'}$
			2680	0.013	?	2690	$\nu_4 + 2\nu_7$	$\mathbf{A'}$
			2598	0.012	~C	2598	$\nu_1 + \nu_9$	A'
					C C	2000	$\nu_1 + \nu_1_0$	A''
			~2390	0.01	A/B	2202	$\nu_1 + \nu_{12}$	Δ'
9245	8	n	9220 (14)d	0.01	R R	2000	Fund	<u>,</u>
2010		d n	2009 (14)-	1.0	u u	ν_1	Fund	a o'
~2004	V W	մք	2299 (12)	1.0	D	<i>v</i> ₂	runu.	a 1
			2244(12)	0.052	В	2202	$\Delta \nu_4$	A
			2111(12)	0.040	В	2113	$\nu_4 + \nu_5$	A
			2066(11)	0.021	Α	2071	$\nu_4 + \nu_6$	A'
			1975(13)	0.030	В	1974	$2\nu_5$	A'
			1911 (14)	0.018	В	1908	$\nu_4 + \nu_7$	A'
			1866(14)	0.06	$\sim c$	1870	$\nu_3 + \nu_9$	A'
							$\nu_3 + \nu_{12}$	A''
			1695	w	В		cis-CCIFCF	D
			$\sim \! 1630$				trans-CClDC impurity	OFH
1609	vs	ŋ	1611 (13)	1.8	В	V2	Fund.	a'
		r	1560(12)	0 41	Ā	1565	$v_A + v_0$	Α'
			1000 (12)	0.11		1564	21-	Δ'
			1497 (19)	0.028	p	1496	247	Δ'
			1999 (11)/	0.020	ر م/ ۸	1420	$\nu_5 + \nu_8$	A
			1382 (11)"	0.25	\mathbf{A}/\mathbf{D}	1384	$\nu_6 + \nu_8$	
			1004 (10)	0.050	D	1000	$2\nu_{10}$	A
			1336 (12)	0.070	В	1338	$\nu_{10} + \nu_{11}$	A'
			1287 (12) ^a	0.033	В	1292	$2\nu_{11}$	A
			1224(12)	0.13	$\sim B$	1221	$\nu_7 + \nu_8$	A'
			1166	0.06	В	1172	$\nu_3 - \nu_8$	A'
1113	s	р	1126 (13)	8.7	В	ν_4	Fund.	a'
			1038 (10)	0.029	в	1041	$\nu_7 + \nu_{\vartheta}$	$\mathbf{A'}$
							$\nu_7 + \nu_{12}$	A''
984	s	р	987 (13)°	4.7	В	V5	Fund.	a'
~ 944	vw	dp	945(14)	0.065	Ā	Ve	Fund.	a'
			()			951	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	Α'
						501		Δ
			004	0.01		005		Δ'
			304	0.01	~ 0	905	$\nu_{11} + \nu_{12}$	A //
			871 (12)		A/B		$p_9 + p_{11}$ trans-CClHC	FD
							impurity	
						878	$2\nu_8$	A'
			850		С		trans-CClDC impurity	FH
			817 ⁷		С		trans-CClHC impurity	FD
782	s	q	782 (12)	1.1	в	דע	Fund.	a'
691	s	đp	692	<0.05	õ	- (1910	Fund	a.''
~ 642	vw	dp?	646ª	0 78	č	P10	Fund	。"
		<i>ч</i> Ъ,	546 (12)	0.10	P	V11 540	r unu.	a * /
442	Ve	n	0±0 (10) 111 (11)d	0.004	ם ס	048	$\nu_8 - \nu_5$	A'
262	*0	dr?	9508	0.001	a D	ν_8	runa.	a. . /
-04	Ø	սի։	409°	1.0	~ 0	ν_9	runa.	a .
						ν_{12}	Fund.	a''

Table VIII: Infrared and Raman Spectra and Assignments for trans-CCID=CFD

^{a-o} See Table I. ^d Rotational spacing of 1.7-2.4 cm⁻¹ in P and R branches. ^e See Table I. ^f Rotational spacing of 2.5 cm⁻¹ in R branch, 2.9 cm⁻¹ in P branch. ^g Rotational spacing of 4.3 cm⁻¹ in R branch.

		Ob	sd			Cal	ed	CCIHCFD CCIDCFD 3113 2311 2310 2289 1621 1609 1273 1171 1075 974 962 837 793 775 627 623 203 203			
	CCIHCFH	CCIDCFH	CCIHCFD	CCIDCFD	CCIHCFH	CCIDCFH	CCIHCFD	CCIDCFD			
a'											
ν_1	3114	3098	3112	2342	3136	3135	3113	2311			
ν_2	3102	2322	2318	2297	3112	2289	2310	2289			
ν_8	1661ª	1637^{a}	1644^{a}	1629	1649	1638	1621	1609			
ν_4	1335	1304	1283	1162^{a}	1351	1322	1273	1171			
ν_5	1231	1155	1051	984	1209	1144	1075	974			
ν_6	1062	851	969	831	1086	854	962	837			
V 7	812	778	791	770	795	778	793	775			
ν_8	656	655	637	638	650	643	627	623			
$\boldsymbol{\nu}_9$	205^{b}	202^{b}	205^{b}	203^{b}	204	203	203	203			
a''											
ν_{10}	857	826	796	691	857	826	797	691			
ν_{11}	735	588	650	575	737	587	650	573			
ν_{12}	442	434	400	394	442	434	400	395			

Table IX: Vibrational Fundamentals of cis-1-Chloro-2-fluoroethylene and Deuterated Modifications (Frequencies in cm⁻¹)

^a Uncorrected for probable shift due to Fermi resonance with a combination tone. ^b From liquid-phase Raman spectra; all others from gas-phase infrared.

case much evidence has been found in support of this band being due to two almost degenerate fundamentals distorted by a strong Coriolis perturbation.^{3b} We therefore confidently assign both ν_9 and ν_{12} to the 274cm⁻¹ band. Table V also includes the eight frequencies which Viehe, *et al.*, assigned to fundamentals.⁸ Agreement with our assignments is within a few cm⁻¹ in every case.

trans-1-Chloro-2-fluoroethylene-1-d1. Given the interpretation that the band in the 270-cm⁻¹ region is due to overlap of the ν_9 and ν_{12} fundamentals as in trans-CClHCFH, one finds the vibrational assignment for trans-CClDCFH to be straightforward. Seven type A/B bands are quickly found in the gas-phase infrared spectrum in Figure 6 and are assigned to in-plane fundamentals. The eighth band, 1284 cm^{-1} , is sufficiently weak in the infrared that the strong, polarized Raman band (Table VI) at this frequency becomes the basis for the assignment. Two type C bands stand out clearly with well defined rotational structure in the gas-phase infrared and have depolarized counterparts in the Raman. In the low-frequency region, where ν_{θ} and v_{12} overlap, exaggerated rotational spacing of 5.1 cm⁻¹, compared with a normal value of about 2.7 cm^{-1} , is again present.

trans-1-Chloro-2-fluoroethylene-2-d₁. The gas-phase infrared spectrum in Figure 7 of trans-CClHCFD contains seven prominent type A/B bands which we have assigned to fundamentals. All but the 951-cm⁻¹ band are supported by polarized bands in the Raman spectrum (Table VII). The 951-cm⁻¹ mode causes a weak, apparently depolarized Raman band. The eighth inplane fundamental must correspond to the type A/B band at 1221 cm⁻¹ and not to the band of comparable intensity at 1378 cm⁻¹. A frequency of 1378 cm⁻¹ is too high for this fundamental, and the 1221-cm⁻¹ as-

signment is supported by a strong, polarized Raman band. Well defined type C bands with obvious rotational structure are at 813 and 689 cm^{-1} in the infrared spectrum. These fundamentals also produce medium intensity, depolarized Raman bands. With eight of the in-plane and two of the out-of-plane fundamentals assigned we turn, as in the trans-CClHCFH and trans-CCIDCFH cases, to the distorted band at the low-frequency end of the spectrum. We assign this band with its 5.2-cm⁻¹ rotational spacing to both the ν_9 and ν_{12} fundamentals. The spectrum of this molecule provides, however, further support for this interpretation beyond that found for trans-CClHCFH and CClDCFH. Although the band for the overlapped fundamentals looks like the corresponding bands for the other two species, but with more poorly defined rotational structure in the R branch, the combination band at 1885 cm^{-1} has two distinct features. This band is assigned as $\nu_3 + \nu_9$ and $\nu_3 + \nu_{12}$ and has a shape strongly suggestive of overlapped type A/B and type C bands.

trans - 1 - Chloro - 2 - fluoroethylene-1,2-d2. Six prominent type A/B bands seen at 2339, 1611, 1126, 987, 782, and 441 $\rm cm^{-1}$ in the gas-phase infrared spectrum of trans-CClDCFD in Figure 8 correspond to polarized Raman bands (Table VIII) and are confidently assigned as in-plane fundamentals. The unusual intensity of the band for the CD-bending mode at 987 cm^{-1} is due to considerable CF-stretching character in this vibration. Although the type A/B band at 2304 $\rm cm^{-1}$ corresponds to a very weak, depolarized Raman band, it must certainly be the second CD stretch. The location of the second CD-bending mode is less certain. Compared with the values of the CD-bending frequencies in the trans-CClDCFH and CClHCFD the lowintensity infrared band at 945 cm^{-1} seems to be the correct assignment, even though the corresponding

		Ob	sd			Ca.	led	
	CCIHCFH	CCIDCFH	CCIHCFD	CCIDCFD	CCIHCFH	CCIDCFH	CCIHCFD	CCIDCF
a '								
ν_1	3103	3099	3099	2339	3120	3118	3111	2301
ν_2	3094ª	2318	2323	2299	3110	2288	2298	2284
ν_3	1647 ^b	1630	1620	1611	1666	1652	1635	1619
ν_4	1296	1284	1221	1126	1287	1279	1210	1124
ν_5	1218	1132	1125	987	1214	1128	1123	995
ve	1127	989	9516	945	1117	986	952	931
ν	876	782	872	782	886	781	877	781
ν_8	447	444	444	439	452	449	450	448
vg	270	266	262	259	277	271	268	263
1''								
ν_{10}	888	851	817	692	888	851	817	692
ν_{11}	784	657	691	646	784	657	691	646
v_{12}	270	266	262	259	268	266	262	259

Table X: Vibrational Fundamentals of trans-1-Chloro-2-fluoroethylenes and Deuterated Modifications (Frequencies in cm⁻¹).

^a From liquid-phase Raman spectra; all others from gas-phase infrared. ^b Uncorrected for probable Fermi resonance with a combination tone.

Raman band is very weak and apparently depolarized. The corresponding fundamental in *trans*-CClHCFD also has a weak, apparently depolarized Raman band. Further, there is no other candidate in the infrared spectrum of reasonable intensity and shape in this region. For the out-of-plane fundamentals only the type C band at 646 cm⁻¹ stands out clearly in the infrared. This band has rich rotational structure and an apparently depolarized version in the Raman spectrum. Close examination of the infrared spectrum reveals the Q branch of a weak type C band at 691 cm⁻¹, which is confirmed by a strong depolarized Raman band. As in the three other *trans* species we assign the spike-like band in the low-frequency region to a near degeneracy in

Table XI: Product Rule Check of Assignments andPrincipal Moments of Inertia in amu Å^{2 a}

		~ — c	is-Isomer-	<u> </u>	-trans-Ison	ner,
		\mathbf{Calc}	d O	bad C	alcd	$\mathbf{O}\mathbf{bsd}$
CCIDCFH	· a'	0.51	2 0.	508 0	. 509 (0.523
CCIHCFH	$a^{\prime\prime}$	0.75	4 0.	757 0	.798 (). 7 91
CCIHCFD	a'	0.51	5 0,	523 0	.510 ().520
CCIHCFH	a''	0,74	2 0.	743 0	.793 ().787
CCIDCFD	a'	0.26	4 0.1	271 0	.260 ().272
CCIHCFH	a''	0.55	70.	562 0	.622 (.616
	Ia	Ib	Ic	Ia	$I_{\rm b}$	Ic
CCIHCFH	31.22	136.1	167.3	8.99	210.6	219.6
CCIDCFH	34.97	136.2	171.2	11.30	210.7	222.0
CCIHCFD	32.91	140.3	173.2	11.12	211.5	222.6
CCIDCFD	36.63	140.4	177.0	13.48	211.5	225.0

^a Geometric parameters: $r_{CC} = 1.333$ Å, $r_{CC1} = 1.726$ Å, $r_{CF} = 1.348$ Å, $r_{CH} = 1.079$ Å, $\alpha_{CCC1} = 123.6^{\circ}$, $\alpha_{CCH} = 123.2^{\circ}$, and $\alpha_{CCF} = 121.0^{\circ}$. J. A. Howe, J. Chem. Phys., **34**, 1247 (1961).

 ν_{9} and ν_{12} . Rotational spacing of 4.3 cm⁻¹ in the R branch and two features for the combination band, $\nu_{1} + \nu_{9}$ and $\nu_{1} + \nu_{12}$ at 2598 cm⁻¹, provide further support for this assignment.

Summary. For the four cis species we are confident of the assignments of the vibrational fundamentals, which are summarized in Table IX. Although some of the evidence is less direct, we believe that we have also obtained complete assignments of the fundamentals of the trans species, Table X. All of the assignments are consistent with the isotope product rule (Table XI) and with the Rayleigh rule. As shown in Tables I-IV for the cis species and Tables V-VIII for the trans, it is possible in almost every case to assign the weaker bands as binary combinations. This agreement was also found for very weak bands with absorption coefficients less than $0.01 \text{ cm}^{-1} \text{ atm}^{-1}$. These very weak bands were omitted from the tables except where they were of special interest such as combinations involving the entangled ν_9 and ν_{12} fundamentals of the trans species.

Thermodynamic Functions. With a complete vibrational assignment of the fundamentals in hand one may check the ΔS° obtained from the thermodynamic measurements and extract ΔE_0° (electronic), the electronic energy difference between the two isomers, from ΔH° . A rigid-rotor, harmonic-oscillator treatment of *cis*and *trans*-CCIHCFH gives $\Delta S^{\circ}_{615} = 0.24 \pm 0.04$ cal/ mol °K and ΔH°_{615} (thermal) = 184 cal/mol for the *cis*-to-*trans* reaction. The calculated value of ΔS°_{615} is in satisfactory agreement with the experimental value of 0.21 cal/mol °K. From the calculated value of ΔH°_{615} (thermal), the experimental value of $\Delta H^{\circ}_{615} =$ 782 ± 22 cal/mol, and ΔE_0° (vibration) = -269 ± 70 cal/mol, one obtains ΔE_0° (electronic) = 867 ± 90 cal/mol. This value for ΔE_0° (electronic) is very nearly

of 1-Chloro-2-fluoroethylenes						
А.	In-Plane Modes:	Modified	Urev-Bradlev	Field		

Table XII: Potential Constants for Vibrations

7.	TU-	rian	e mo)aes;	MOG.	mea	Urey-E	sraaley	r ierc
[K]	F,	and	C in	mdy	n/Å;	H i	n mdyn	Å/rad	ian²]

	$\mathbf{Zero}\operatorname{-order}^{a}$	Overlay	Dispersion
$K_{\rm CC}$	7.48	7.50	0.14
K_{CH}	4.83	4.82	0.051
$K_{\rm CF}$	5.20	4.67	0.22
$K_{\rm CC1}$	2.66	2.75	0.32
$H_{\rm CCH}$	0.335	0.187	0.065
$H_{ m HCF}$	0.500^{b}	0.491	0.074
H_{CCF}	0.172	1.14	0.21
$H_{ m HCC1}$	0.383	0.273	0.079
$H_{\rm CCO1}$	0.207		
F_{CH}	0.450	0.394	0.086
$F_{\rm CF}$	1.37	0.754	0.21
$F_{\rm HF}$	0.340	0.557	0.089
$F_{\rm CC1}$	0.92	0.769	0.10
$F_{\rm HC1}$	0.30	0.524	0.087
$C_{\rm HH}$	0.0	-0.009	0.022
$C_{\rm FC1}$	0.080	-0.004	0.028
$C_{\rm HF}$	-0.045	-0.043	0.038
CHCI	0.030	-0.077	0.040
T_{δ}	0.0	0.097	0.031

B. Out-of-plane Modes; General Valence Field [mdyn Å/radian²]

			trans		
	$\mathbf{Refined}^{s}$	Dispersion	Refined	Dispersion	
$F_{\gamma} \mathrm{H(Cl)}$	0.356	0.0006	0.345	0.0004	
$F_{\gamma} \mathbf{H} (\mathbf{F})$	0.353	0.0007	0.363	0.0005	
F_{τ}	0,529	0.0017	0.468	0.0029	
$F_{\gamma\gamma}$	0.064	0.0005	0.143	0.0004	
$F_{\tau\gamma}$ H(Cl)	-0.267	0.0016	-0.220	0.0028	
$F_{\tau\gamma} \mathbf{H}(\mathbf{F})$	-0.211	0.0010	-0.195	0.0023	
^a Reference tants: $F_{\delta} =$	e 11. ^b Ref 0.30 and F_{τ}	erence 16. = 0.30; all o	° Zero-order thers 0.0.	force con-	

the mean of the values for CFHCFH, 1086 cal/mol,^{3b} and CClHCClH, 642 cal/mol.4a

Normal Coordinate Calculations. In-Plane Modes. For the in-plane normal coordinate calculations five valence bond stretching coordinates and six unscaled valence angle bending coordinates were used. Two rocking and two scissors coordinates and two angle redundancy relationships were then defined as before for halogenated ethylenes.^{10,18} The geometric parameters (Table XI) were based in part on microwave results for the cis isomer. The calculations were performed with the Minnesota normal coordinate programs, which employ a modified GF formalism.14 These programs were adapted for use on an IBM 360/44 computer.

The four cis species and the four trans species were treated together in an overlay calculation with a modified Urey-Bradley force field (MUBFF). All force constants except those for the cis interaction were considered to be the same for the two isomers. In addition, the same stretching (K_{CH}) , bending (H_{CCH}) ,

and gem interaction (F_{CH}) constants were used for the hydrogen atoms on the two ends of the molecule. A trans CH-bend interaction force constant (T_{δ}) , which had proved useful before for trans haloethylenes, ^{8b, 15} was added to improve the frequency fit and reduce the force constant dispersions. This interaction constant compensated in part for the constraint imposed by using only one H_{CCH} constant. Even though this normal coordinate problem with 22 force constants seemed well determined by the 72 observed frequencies, it proved necessary to hold the $H_{\rm CCC1}$ constant at its zero-order value. Of course, frequency changes due to deuteration provide little new information about the force constants for carbon-halogen-rich modes, and the MUBFF is a questionable approximation.

The zero-order force constants (Table XII) are the same as those used in our earlier CCIFCCIH calculations.¹⁰ except where supplemented with force constants from the CFHCFH calculations.^{3b} The average differences between calculated and observed frequencies (Tables X and XI) are 1%. With the exception of the CH-stretching frequencies, where neglect of anharmonicity corrections is most serious, almost all of the calculated frequencies are within 15 cm^{-1} of the observed The refined force constants (Table XII) compare ones. favorably with the zero-order values except in the case of H_{CCF} . Attempts to hold this force constant to a smaller value were unsuccessful. Dispersions of refined force constants are of reasonable magnitude except for those of the *cis* interaction constants. The satisfactory overlay calculation is added evidence in support of the assignments of the vibrational fundamentals.

Exploratory calculations with the MUBFF for the cis and trans species separately were unrewarding as the calculations either diverged or refined to unacceptable force constants. We expect, however, to make a more thorough study of the normal coordinates with several force field approximations for separate isomers.

One of the goals of this study of *cis-trans* isomerism in haloethylenes is to find evidence for cis stability in the force constants. In contrast to the CFHCFH case the cis-type interaction constants are apparently too poorly defined to permit any, even tentative, deductions. We do find, however, the same pattern in the fit of the CCstretching frequencies. The overlay values for the cis isomers are, on the average, 14 cm^{-1} too low and those for the *trans* isomers are 15 cm^{-1} too high. This result may imply a larger K_{CC} force constant for the cis isomer, which correlates with its lower electronic energy.

Out-of-Plane Modes. As in our previous haloethylene calculations two wagging coordinates and one torsion

- (13) J. R. Scherer and J. Overend, J. Chem. Phys., 32, 1720 (1960).
- (14) (a) J. R. Scherer and J. Overend, *ibid.*, 32, 1289 (1960);
 (b) C. D. Needham, Ph.D. Thesis, University of Minnesota, 1965.
- (15) J. R. Scherer and J. Overend, J. Chem. Phys., 33, 1681 (1960).

coordinate were defined for out-of-plane vibrations.^{3b,16} One wagging coordinate, R_{γ} FH, was the change in angle between a CH bond and the plane defined by the CCF atoms, and the other was the change in angle between the second CH bond and the plane defined by the CCCl atoms. The change in the dihedral angle between the CCF and CCCl planes was the torsion coordinate. The cis and trans isomers were treated separately with sixparameter general valence force fields.

As shown in Tables X and XI, calculated frequencies fit the experimental ones within 1 cm⁻¹ in all but three instances, and all of the calculated force constants, Table XII, have convincingly low dispersions. The diagonal force constants are in good agreement with the ones obtained in the separate calculations for the *cis* and *trans* isomers of CFHCFH.^{3b} For *cis*-CFHCFH, $F_{\gamma} = 0.362$, $F_{\tau} = 0.551$, $F_{\gamma\gamma} = 0.0534$, and $F_{\gamma\tau} =$ -0.246; for *trans*-CFHCFH, $F_{\gamma} = 0.347$, $F_{\tau} = 0.460$, $F_{\gamma\gamma} = 0.141$, and $F_{\gamma\tau} = -0.190$. The pattern of a wagging force constant that is nearly independent of **c**onfiguration and a torsion force constant that is significantly larger for the *cis* isomer is repeated. The off-diagonal force constants are also in good agreement with those for the diffuoroethylenes. The difference in torsion force constants correlates with the lower electronic energy of the *cis* isomer. Furthermore, the 13% difference in the F_{τ} force constants for the chloro-fluoroethylenes is less than the 20% difference for the diffuoroethylenes in parallel with the order of the difference in the electronic energies of the *cis* and *trans* isomers.

Acknowledgments. This research was supported by the Petroleum Research Fund (Grant 2422-B). J. C. W. and L. G. P. were National Science Foundation undergraduate research participants. We are indebted to John K. Piraino and David D. Sherertz for adapting the Minnesota normal coordinate programs for use on the IBM 360/44 computer.

(16) E. B. Wilson, J. C. Decius, and P. C. Cross, "Molecular Vibrations," McGraw-Hill Publications, New York, N. Y., 1955, pp 58-62.